-
CoLAKE
提出了一个方法可以同时做语言和知识的表征,并且在需要知识的任务中有较好的表现,在一些NLU(不太需要知识)的任务也没有降很多。
把输入的句子看成是一个全连接的graph,即word graph。然后根据句子中的实体到知识图谱中找一级三元组,只找对应实体的第一层邻居。然后将句子中的实体作为锚点(ancher node),以锚节点为中心抽出sub-knowledge-graph,然后根据锚点将sub-knowledge-graph和word graph合并。这是示意图是这样的,实际操作起来,在输入的时候这些node也是序列摆放,他们的graph结构是通过position embedding和mask矩阵来体现的。